GlobalHAB Symposium 2022

Kristineberg Centre for Marine Research

22/08/2022 - 26/08/2022

Rob Lievaart & Vikram Rao

CytoBuoy BV. - A Dutch company with over 25 years of experience in manufacturing particle analysis instruments and accessories

Main Products

CytoSense

- Benchtop version of the imaging flow cytometer
- On board a ship in a ferry box setting
- Easily connected to accessories for increased automation
- Internal or external additional filtration, beads and biocide system
- 1 Laser or 2 Lasers (405,445,473,448,532,552,561,594,63 7)
- 1FWS, 2 SWS, 6 fluorescence detectors
- Anti-shock frame withstanding vibration (handy on board a ship)
- Remotely adjustable injector system
- Anti-clogging system
- No pre-filtration required

CytoSub

- All of the features of the CytoSense
- Depth ranging 2m, 20m and 200m max.
- On a buoy, platform or mooring
- Modified into a laboratory setting
- Internal filtration, beads and biocide system (left unattended and remotely operated)
- Remotely adjustable injector system

- 4 compartments in the frame
- Solar Panels
- Argos system
- Telemetry System
- Battery Pack

J Features

		CONDITION	VALUE	ENTITY	REMARKS	
Particlesize & sample size	smallest particle size	equal or smaller	0.1/0.4	μm	Detection: Sideward scatter. Depending on the refractive index (For	
					example: 0.1 for polystyrene microspheres, 0.4 for cells like	
					Prochl.m.)	
	minimum system orifice	equal or bigger	800	μm	the minimum system orifice limits the size of organisms that can flow	
	dimension				through	
	maximum analyzed particle	equal or longer	2.500	μm	this allows filamentous and elongated organisms to be analyzed correctly	
	length					
	minimum volumetric sample	equal or smaller	5	μ1/min.	the low flow rate is important to analyse samples with small particles at	
	flow rate				high abundance without dilution	
	maximum volumetric sample	equal or bigger	1.000	µl∕min.	the high flow rate is important to analyse samples with low particle	
	flow rate				concentration	
	particle concentration		$10^3 - 10^{11}$	particles/L	10 ¹¹ means 7,000 particles per second @ ca. 10% coincidence	

		CONDITION	VALUE	ENTITY	REMARKS
Data format	full signal pulse profiles	meet	available		allows morphological analysis of larger organisms, linear biomass
	(scans) per particle				determination and high sensitivity
	maximum particle analysis	equal or bigger	10.000	particles/s	the count rate is important to analyse samples with smaller cells at high
	(scan) rate				abundance (increases coincidence)
	maximum particle scans	equal or more	1.250.000	particles	maximum amount of particle scans per file

Features

		CONDITION	VALUE	ENTITY	REMARKS	
	maximum imaging rate	equal or more	20	photos/s		
	maximum photos per file	equal or more	10.000	photos		
Particle imaging optional	optical photo resolution	equal or smaller	0.8	μm	resolution defined by the quality of the optics. NA=0.4.	
	digital photo resolution	equal or more	3.3	pixels/µm	resolution defined by the sensor	
			4.6*		*optional - high resolution camera	
	image frame size (W x H)	equal or more	576 x 360	μm x μm	this is the size of the field of view of the camera	
			778 x 614*		*optional - larger sensor	
			528 x 441**		** optional - higher resolution camera	
	Image resolution (W x H)	meet	1920 x 1200	pixels	*optional - higher resolution camera	
			2448 x 2048*			
	magnification	equal or more	16x	factor		
	image matching with optical	meet	yes		each image is combined with the optical signal profiles for that particle	
	signal scan					
	photo triggering based on all	meet	yes		targeted imaging: smart preselection of photos based on various	
	optical signals				combinations of the optical signals	

Operation and Software

Operation and Software

Some HAB species detected by CytoSense

	Alexandrium	Microcystis
Particle Id: 10971	Gymnodinium	Ceratium
Patrice Id. 1257	Pseudo-nitzschia	Dinophysis
40 μm	Prorocentrum	

1

Images

Other species detected by CytoSense

Paraset and and a second	Asterionella	Sign Packa is The	Coleps
	Cetrataulina		Coscinodiscus
A A A A A A A A A A A A A A A A A A A	Chaetoceros		Dactyliosolen
l 193 pro	Ciliates	L 40 µm Particle ld: 31212	Dinoflaggelates
	Zooplankton	Parade k2: 44932	Volvox

1

Sampling Automation: A lab system enables you to monitor multiple individual sample stations with individual scheduling

Staining Module: A device for fluorescent staining, coupled to a CytoSense, for automated online analysis of microbial groups of autotrophs (algae), mixo- and heterotrophs (bacteria, microzooplankton) and other particles

Automated Filtration System: The recirculating sheath fluid is kept clean and clear for long periods by an autonomy system consisting of filters, biocide dosing, activated carbon and calibration diagnostics.

izasa

a werfen company

CytoSense XR

Thank You