

Plankton Classification with CNNs

Sidney Batchelder

Plankton!

Problem Overview

- IFCB takes 100k+ plankton images per day
- Too many for manual annotation
- Previous feature-based classifier (random forest)
 - ~70% effective
- Let's do better!

Neural Nets

• Emulate, broadly-speaking, the way signals flow through neurons of a biological brain

Training NNs (supervised)

- Known inputs-outputs pairs (labeled data)
- Output error (loss)
- Updating node weights (backprop)
 - backward propagation of errors
 - optimizer
- Iterate!
- Don't Overfit.

Backprop: it gets complex

Lots of configurations exist...

So what are we working with here?IFCB Data

- 300k labeled images over 100-150 classes
- Billion+ images in total
 - MVCO dataset, the largest spanning 17 years
- Need:
 - Efficient processing of images
 - Differentiate output for different classes
 - Enough complexity to handle lots of cases/details

What do we need?

- Deep
 - Many hidden layers
 - Allows for more complex "understanding"
- Convolutional
 - Method for reducing complexity of input for next layer by identifying features, ie patterns.
 - Great for rich media (images, audio, 3D)
- Multi-Label Classification
 - Many nodes in output layer
 - Cross-Entropy loss function

ConvNets

ConvNets (cont...)

Leveraging Existing Architectures

* initial architecture explorations

Inception V3

Results: Training

Results: Confusion Matrix

VPR-uw_2020-01-09, f1_weighted=80.00% (epoch 23)

Improving IFCB products

Improving IFCB products

Dinophysis_acuminata (Dataset: NESLTER_broadscale

Dinophysis_acuminata (Dataset: nauset)

>95% prob threshold produces 'cleaner' classifier product than simple winning prob

Details vary by species and time/location

Margalefidinium (Dataset: fiddlers)

Human annotation of images remains the gold standard

Need a mechanism to push these directly into HAB hub

Results: Class Counts

HPC Stats

- GPU Node: 4x NVIDIA Volta 100's
- Training
 - half hour per epoch, ~16 epochs per run typically
 - 8 hours per fully trained model

Running

- MVCO data-subset: 29 million images
- Total time: 19.5 hours
- Single GPU Rate: 400 images/sec
- Max Rate: 1600 images/sec with 4 GPU's

Outcome

Process 17 years of data (7.7 TB)

in approx 1 week

at 90%+ effectiveness with 100+ classes

Classification on the Edge

- Sending image data by satellite is costly
- Sending counts and statistics is not!
- Nvidia Jetson modules + other hardware
- Realtime processing

Resources and Obstacles

- GitHub Repo
 - github.com/WHOIGit/ifcb classifier
- Trained models not currently published/available
- No active support for 3rd parties...
- But you're welcome to fork the project!

Acknowledgements

- Dr. Heidi Sosik
- Members of the Sosik Lab
- Michael Brosnahan
- WHOI IS App Dev Team

Thank you!

0 23 CARDON STREET STRE +0 00660000 0 0 SECTOR DECEMBER 語 CONTRACTOR DE LA CONTRA # 52 £ 100 0 m a 19 0 • CARLES CONTRACTOR CONTRACTOR CONTRACTOR 0 ñ. **ചനദ്ദത്തമിദ്യാകത്തിലായ്തി** 13,000 -----RENE CONTRACTOR CONTRACTOR and and addition of CONSIGNATION CONSIGNATION FOR A 33 34 4 4 4 4 5 5 5 4 CE EN LESS CE CONTRACTOR CE EN LESS 30 -----INTERNET STATES STATES (日至22) 0